|
||
超聲流量計(以下簡稱USF)是通過檢測流體流動時對超聲束(或超聲脈沖)的作用,以測量體積流量的儀表。本文主要討論用于測量封閉管道液體流量的USF。
20世紀70年代隨著電子技術(shù)的發(fā)展,性能日益完善的各種型號USF投入市場。有人預(yù)言由于USF測量原理是長度與時間兩個基本量的結(jié)合,其導(dǎo)出量溯源性較好,有可能據(jù)此建立流量基準。
超聲流量計(以下簡稱USF)是通過檢測流體流動時對超聲束(或超聲脈沖)的作用,以測量體積流量的儀表。本文主要討論用于測量封閉管道液體流量的USF。
20世紀70年代隨著電子技術(shù)的發(fā)展,性能日益完善的各種型號USF投入市場。有人預(yù)言由于USF測量原理是長度與時間兩個基本量的結(jié)合,其導(dǎo)出量溯源性較好,有可能據(jù)此建立流量基準。
封閉管道用USF按測量原理分類有:①傳播時間法;②多普勒效應(yīng)法;③波束偏移法;④相關(guān)法;⑤噪聲法。本文將討論用得最多的傳播時間法和多普勒效應(yīng)法的儀表。
1.1 傳播時間法
聲波在流體中傳播,順流方向聲波傳播速度會增大,逆流方向則減小,同一傳播距離就有不同的傳播時間。利用傳播速度之差與被測流體流速之關(guān)系求取流速,稱之傳播時間法。按測量具體參數(shù)不同,分為時差法、相位差法和頻差法?,F(xiàn)以時差法闡明工作原理。
(1) 流速方程式
如圖1所示,超聲波逆流從換能器1送到換能器2的傳播速度c被流體流速Vm所減慢,為:
1.1 傳播時間法
聲波在流體中傳播,順流方向聲波傳播速度會增大,逆流方向則減小,同一傳播距離就有不同的傳播時間。利用傳播速度之差與被測流體流速之關(guān)系求取流速,稱之傳播時間法。按測量具體參數(shù)不同,分為時差法、相位差法和頻差法?,F(xiàn)以時差法闡明工作原理。
(1) 流速方程式
如圖1所示,超聲波逆流從換能器1送到換能器2的傳播速度c被流體流速Vm所減慢,為:
(1)
反之,超聲波順流從換能器2傳送到換能器1的傳播速度則被流體流速加快,為:
反之,超聲波順流從換能器2傳送到換能器1的傳播速度則被流體流速加快,為:
(2)
式(1)減式(2),并變換之,得
式(1)減式(2),并變換之,得
(3)
式中 L——超聲波在換能器之間傳播路徑的長度,m;
X——傳播路徑的軸向分量,m;
t12、t21——從換能器1到換能器2和從換能器2到換能器1的傳播時間,s;
c——超聲波在靜止流體中的傳播速度,m/s;
Vm——流體通過換能器1、2之間聲道上平均流速,m/s。
時(間)差法與頻(率)差法和相差法間原理方程式的基本關(guān)系為
(4)
(5)
式中 △f——頻率差;
△ φ——相位差;
f21,f12——超聲波在流體中的順流和逆流的傳播頻率;
f——超聲波的頻率。
從中可以看出,相位差法本質(zhì)上和時差法是相同的,而頻率與時間有時互為倒數(shù)關(guān)系,三種方法沒有本質(zhì)上的差別。目前相位差法已不采用,頻差法的儀表也不多。
(2) 流量方程式
傳播時間法所測量和計算的流速是聲道上的線平均流速,而計算流量所需是流通橫截面的面平均流速,二者的數(shù)值是不同的,其差異取決于流速分布狀況。因此,必須用一定的方法對流速分布進行補償。此外,對于夾裝式換能器儀表,還必須對折射角受溫度變化進行補償,才能精確的測得流量。體積流量qv為
(6)
式中 K——流速分布修正系數(shù),即聲道上線平均流速Vm和面平均流速vm和平面平均流速v之比,K=vm/v;
DN-管道內(nèi)徑。
K是單聲道通過管道中心(即管軸對稱流場的最大流速處)的流速(分布)修正系數(shù)。管道雷諾數(shù)ReD變化K值將變化,儀表范圍度為10時,K值變化約為1%;范圍度為100時,K值約變化2%。流動從層流轉(zhuǎn)變?yōu)槲闪鲿r,K值要變化約30%。所以要精確測量時,必須對K值進行動態(tài)補償。
1) 夾裝式換能器儀表聲道角的修正 夾裝式換能器USF除了做流速分布修正外,必要時還要做聲道角變化影響的修正。根據(jù)斯那爾(Snall)定律式(7)和圖2,聲道角θ隨流體中聲速c的變化而變化,而c又是流體溫度的函數(shù)(以水為例,見圖3),因此,必須對θ角進行自動跟蹤補償,以達到溫度補償?shù)哪康摹?BR> (7)
式中 φ0-超聲在聲楔中的入射角;
φ1、φ-超聲在管壁、流體中的折射角;
c0、c1、c-聲楔、管壁、被測流體的聲速。
θ角不但受流體聲速影響,還與聲楔和管壁材料中的聲速有關(guān)。然而因為一般固體材料的聲速變化比液體聲速溫度變化小一個數(shù)量級,在溫度變化不大的條件下對測量精確度的影響可以忽略不計。但是在溫度變化范圍大的情況下(例如高低溫換能器工作溫度范圍-40-200℃)就必須對聲楔和管壁中聲速的大幅度變化進行修正。
2) 多聲道直射式換能器儀表的流量方程式直射式換能器儀表的流量方程沒有管壁材料折射溫度變化影響。多聲道儀表常用高斯積分法或其他積分法計算流量。圖4是以四聲道為例的原理模型,流量計算式(8)所示。
(8)
式中 DN-測量段內(nèi)與聲道垂直方向上的圓管平均內(nèi)徑或矩形管道的平均內(nèi)高;
S-高斯修正系數(shù);
Wi-各聲道高斯積分加權(quán)數(shù);
Li-各聲道長度;
Vi-各聲道線平均流速;
θi-各聲道聲道角;
N-聲道數(shù)。
式中 L——超聲波在換能器之間傳播路徑的長度,m;
X——傳播路徑的軸向分量,m;
t12、t21——從換能器1到換能器2和從換能器2到換能器1的傳播時間,s;
c——超聲波在靜止流體中的傳播速度,m/s;
Vm——流體通過換能器1、2之間聲道上平均流速,m/s。
時(間)差法與頻(率)差法和相差法間原理方程式的基本關(guān)系為
(4)
(5)
式中 △f——頻率差;
△ φ——相位差;
f21,f12——超聲波在流體中的順流和逆流的傳播頻率;
f——超聲波的頻率。
從中可以看出,相位差法本質(zhì)上和時差法是相同的,而頻率與時間有時互為倒數(shù)關(guān)系,三種方法沒有本質(zhì)上的差別。目前相位差法已不采用,頻差法的儀表也不多。
(2) 流量方程式
傳播時間法所測量和計算的流速是聲道上的線平均流速,而計算流量所需是流通橫截面的面平均流速,二者的數(shù)值是不同的,其差異取決于流速分布狀況。因此,必須用一定的方法對流速分布進行補償。此外,對于夾裝式換能器儀表,還必須對折射角受溫度變化進行補償,才能精確的測得流量。體積流量qv為
(6)
式中 K——流速分布修正系數(shù),即聲道上線平均流速Vm和面平均流速vm和平面平均流速v之比,K=vm/v;
DN-管道內(nèi)徑。
K是單聲道通過管道中心(即管軸對稱流場的最大流速處)的流速(分布)修正系數(shù)。管道雷諾數(shù)ReD變化K值將變化,儀表范圍度為10時,K值變化約為1%;范圍度為100時,K值約變化2%。流動從層流轉(zhuǎn)變?yōu)槲闪鲿r,K值要變化約30%。所以要精確測量時,必須對K值進行動態(tài)補償。
1) 夾裝式換能器儀表聲道角的修正 夾裝式換能器USF除了做流速分布修正外,必要時還要做聲道角變化影響的修正。根據(jù)斯那爾(Snall)定律式(7)和圖2,聲道角θ隨流體中聲速c的變化而變化,而c又是流體溫度的函數(shù)(以水為例,見圖3),因此,必須對θ角進行自動跟蹤補償,以達到溫度補償?shù)哪康摹?BR> (7)
式中 φ0-超聲在聲楔中的入射角;
φ1、φ-超聲在管壁、流體中的折射角;
c0、c1、c-聲楔、管壁、被測流體的聲速。
θ角不但受流體聲速影響,還與聲楔和管壁材料中的聲速有關(guān)。然而因為一般固體材料的聲速變化比液體聲速溫度變化小一個數(shù)量級,在溫度變化不大的條件下對測量精確度的影響可以忽略不計。但是在溫度變化范圍大的情況下(例如高低溫換能器工作溫度范圍-40-200℃)就必須對聲楔和管壁中聲速的大幅度變化進行修正。
2) 多聲道直射式換能器儀表的流量方程式直射式換能器儀表的流量方程沒有管壁材料折射溫度變化影響。多聲道儀表常用高斯積分法或其他積分法計算流量。圖4是以四聲道為例的原理模型,流量計算式(8)所示。
(8)
式中 DN-測量段內(nèi)與聲道垂直方向上的圓管平均內(nèi)徑或矩形管道的平均內(nèi)高;
S-高斯修正系數(shù);
Wi-各聲道高斯積分加權(quán)數(shù);
Li-各聲道長度;
Vi-各聲道線平均流速;
θi-各聲道聲道角;
N-聲道數(shù)。
2.2 多普勒(效應(yīng))法
多普勒(效應(yīng))法USF是利用在靜止(固定)點檢測從移動源發(fā)射聲波多產(chǎn)生多普勒頻移現(xiàn)象。
(1) 流速方程式
如圖5所示,超聲換能器A向流體發(fā)出頻率為fA的連續(xù)超聲波,經(jīng)照射域內(nèi)液體中散射體懸浮顆?;驓馀萆⑸?,散射的超聲波產(chǎn)生多普勒頻移fd,接收換能器B收到頻率為fB的超聲波,其值為
(9)
式中 v-散射體運動速度。
多普勒頻移fd正比于散射體流動速度
(10)
測量對象確定后,式(10)右邊除v外均為常量,移行后得
(11)
多普勒(效應(yīng))法USF是利用在靜止(固定)點檢測從移動源發(fā)射聲波多產(chǎn)生多普勒頻移現(xiàn)象。
(1) 流速方程式
如圖5所示,超聲換能器A向流體發(fā)出頻率為fA的連續(xù)超聲波,經(jīng)照射域內(nèi)液體中散射體懸浮顆?;驓馀萆⑸?,散射的超聲波產(chǎn)生多普勒頻移fd,接收換能器B收到頻率為fB的超聲波,其值為
(9)
式中 v-散射體運動速度。
多普勒頻移fd正比于散射體流動速度
(10)
測量對象確定后,式(10)右邊除v外均為常量,移行后得
(11)
(2)流量方程式
多普勒法USF的流量方程式形式上與式(6)相同,只是所測得的流速是各散射體的速度v(代替式中的vm),與載體液體管道平均流速數(shù)值并不一致;方程式中流速分布修正系數(shù)Kd以代替K0 Kd是散射體的“照射域”在管中心附近的系數(shù);其值不適用于在大管徑或含較多散射體達不到管中心附近就獲得散射波的系數(shù)。
(3) 液體溫度影響的修正
式(11)中又流體聲速c,而c是溫度的函數(shù),液體溫度變化會引起測量誤差。由于固體的聲速溫度變化影響比液體小一個數(shù)量級,即在式(11)中的流體聲速c用聲楔的聲速c0取代,以減小用液體聲速時的影響。因為從圖6可知cosθ=sinφ,再按斯納爾定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可視為常量。
(12)
(4) 散射體的影響
實際上多普勒頻移信號來自速度參差不一的散射體,而所測得各散射體速度和載體液體平均流速間的關(guān)系也有差別。其他參量如散射體粒度大小組合與流動時分布狀況,散射體流速非軸向分量,聲波被散射體衰減程度等均影響頻移信號。
多普勒法USF的流量方程式形式上與式(6)相同,只是所測得的流速是各散射體的速度v(代替式中的vm),與載體液體管道平均流速數(shù)值并不一致;方程式中流速分布修正系數(shù)Kd以代替K0 Kd是散射體的“照射域”在管中心附近的系數(shù);其值不適用于在大管徑或含較多散射體達不到管中心附近就獲得散射波的系數(shù)。
(3) 液體溫度影響的修正
式(11)中又流體聲速c,而c是溫度的函數(shù),液體溫度變化會引起測量誤差。由于固體的聲速溫度變化影響比液體小一個數(shù)量級,即在式(11)中的流體聲速c用聲楔的聲速c0取代,以減小用液體聲速時的影響。因為從圖6可知cosθ=sinφ,再按斯納爾定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可視為常量。
(12)
(4) 散射體的影響
實際上多普勒頻移信號來自速度參差不一的散射體,而所測得各散射體速度和載體液體平均流速間的關(guān)系也有差別。其他參量如散射體粒度大小組合與流動時分布狀況,散射體流速非軸向分量,聲波被散射體衰減程度等均影響頻移信號。
2.1 優(yōu)點
USF可作非接觸測量。夾裝式換能器USF可無需停流截管安裝,只要在既設(shè)管道外部安裝換能器即可。這是USF在工業(yè)用流量儀表中具有的獨特優(yōu)點,因此可作移動性(即非定點固定安裝)測量,適用于管網(wǎng)流動狀況評估測定
USF為無流動阻撓測量,無額外壓力損失。
流量計的儀表系數(shù)是可從實際測量管道及聲道等幾何尺寸計算求得的,既可采用干法標定,除帶測量管段式外一般不需作實流校驗。
USF適用于大型圓形管道和矩形管道,且原理上不受管徑限制,其造價基本上與管徑無關(guān)。對于大型管道不僅帶來方便,可認為在無法實現(xiàn)實流校驗的情況下是優(yōu)先考慮的選擇方案。
多普勒USF可測量固相含量較多或含有氣泡的液體。
USF可測量非導(dǎo)電性液體,在無阻撓流量測量方面是對電磁流量計的一種補充。
因易于實行與測試方法(如流速計的速度-面積法,示蹤法等)相結(jié)合,可解決一些特殊測量問題,如速度分布嚴重畸變測量,非圓截面管道測量等。
某些傳播時間法USF附有測量聲波傳播時間的功能,即可測量液體聲速以判斷所測液體類別。例如,油船泵送油品上岸,可核查所測量的是油品還是倉底水。
2.2 缺點和局限性
傳播時間法USF只能用于清潔液體和氣體,不能測量懸浮顆粒和氣泡超過某一范圍的液體;反之多普勒法USF只能用于測量含有一定異相的液體。
外夾裝換能器的USF不能用于襯里或結(jié)垢太厚的管道,以及不能用于襯里(或銹層)與內(nèi)管壁剝離(若夾層夾有氣體會嚴重衰減超聲信號)或銹蝕嚴重(改變超聲傳播路徑)的管道。
多普勒法USF多數(shù)情況下測量精度不高。
國內(nèi)生產(chǎn)現(xiàn)有品種不能用于管徑小于DN25mm的管道。
USF可作非接觸測量。夾裝式換能器USF可無需停流截管安裝,只要在既設(shè)管道外部安裝換能器即可。這是USF在工業(yè)用流量儀表中具有的獨特優(yōu)點,因此可作移動性(即非定點固定安裝)測量,適用于管網(wǎng)流動狀況評估測定
USF為無流動阻撓測量,無額外壓力損失。
流量計的儀表系數(shù)是可從實際測量管道及聲道等幾何尺寸計算求得的,既可采用干法標定,除帶測量管段式外一般不需作實流校驗。
USF適用于大型圓形管道和矩形管道,且原理上不受管徑限制,其造價基本上與管徑無關(guān)。對于大型管道不僅帶來方便,可認為在無法實現(xiàn)實流校驗的情況下是優(yōu)先考慮的選擇方案。
多普勒USF可測量固相含量較多或含有氣泡的液體。
USF可測量非導(dǎo)電性液體,在無阻撓流量測量方面是對電磁流量計的一種補充。
因易于實行與測試方法(如流速計的速度-面積法,示蹤法等)相結(jié)合,可解決一些特殊測量問題,如速度分布嚴重畸變測量,非圓截面管道測量等。
某些傳播時間法USF附有測量聲波傳播時間的功能,即可測量液體聲速以判斷所測液體類別。例如,油船泵送油品上岸,可核查所測量的是油品還是倉底水。
2.2 缺點和局限性
傳播時間法USF只能用于清潔液體和氣體,不能測量懸浮顆粒和氣泡超過某一范圍的液體;反之多普勒法USF只能用于測量含有一定異相的液體。
外夾裝換能器的USF不能用于襯里或結(jié)垢太厚的管道,以及不能用于襯里(或銹層)與內(nèi)管壁剝離(若夾層夾有氣體會嚴重衰減超聲信號)或銹蝕嚴重(改變超聲傳播路徑)的管道。
多普勒法USF多數(shù)情況下測量精度不高。
國內(nèi)生產(chǎn)現(xiàn)有品種不能用于管徑小于DN25mm的管道。
3.1 組成
USF主要由安裝在測量管道上的超聲換能器(或由換能器和測量管組成的超聲流量傳感器)和轉(zhuǎn)換器組成。轉(zhuǎn)換器在結(jié)構(gòu)上分為固定盤裝式和便攜式兩大類。換能器和轉(zhuǎn)換器之間由專用信號傳輸電纜連接,在固定測量的場合需在適當?shù)牡胤窖b接線盒。夾裝式換能器通常還需配用安裝夾具和耦合劑。圖7是系統(tǒng)組成示例,此例是測量液體用傳播時間法單聲道Z法夾裝式USF.
3.2 分類
可以從不同角度對超聲流量測量方法和換能器(或傳感器)進行分類。
(1) 按測量原理分類
封閉管道用USF按測量原理有5種,如2節(jié)所述,現(xiàn)在用得最多的是傳播時間法和多普勒法兩大類。
(2) 按被測介質(zhì)分類
USF主要由安裝在測量管道上的超聲換能器(或由換能器和測量管組成的超聲流量傳感器)和轉(zhuǎn)換器組成。轉(zhuǎn)換器在結(jié)構(gòu)上分為固定盤裝式和便攜式兩大類。換能器和轉(zhuǎn)換器之間由專用信號傳輸電纜連接,在固定測量的場合需在適當?shù)牡胤窖b接線盒。夾裝式換能器通常還需配用安裝夾具和耦合劑。圖7是系統(tǒng)組成示例,此例是測量液體用傳播時間法單聲道Z法夾裝式USF.
3.2 分類
可以從不同角度對超聲流量測量方法和換能器(或傳感器)進行分類。
(1) 按測量原理分類
封閉管道用USF按測量原理有5種,如2節(jié)所述,現(xiàn)在用得最多的是傳播時間法和多普勒法兩大類。
(2) 按被測介質(zhì)分類
有氣體用和液體用兩類。傳播時間法USF兩種介質(zhì)各自專用,因換能器工作頻率各異,通常氣體在100~300kHz之間,液體在1~5MHz之間。氣體儀表不能用夾裝式換能器,因固體和氣體邊界間超聲波傳播效率較低。 (3) 傳播時間法按聲道數(shù)分類 按聲道數(shù)分類常用的有單聲道、雙聲道、四聲道和八聲道四種。近年有出現(xiàn)三聲道、五聲道和六聲道。四聲道及以上的多聲道配置對提高測量精度起很大作用。各聲道按換能器分布位置(見圖8),又可分為以下幾種。 1) 單聲道 有Z法(透過法)和V法(反射法)兩種。 2) 雙聲道 有X法(2Z法、交差法)、2V法和平行法三種。 3) 四聲道 有4Z法和平行法兩種。 4) 八聲道 有平行法和兩平行四聲道交差法二種。 (4) 按換能器安裝方式分類有、 1) 可移動安裝 2) 固定安裝 |